Oxidative addition of phenylphosphole: X-ray crystal structures of two ring-opened products $\left[\mathrm{Os}_{3}\left(\mu_{3}-\mathrm{PhPC}_{4} \mathrm{H}_{4}\right)(\mathrm{CO})_{x}\right]$ where $x=8$ or 9

Alejandro J. Arce *, Ysaura De Sanctis, Jorge Manzur
Chemistry Centre, Instituto Venezolano de Investigaciones Cientificas (IVIC), Apartado 21827, Caracas 1020-A (Venezuela)
Antony J. Deeming * and Nicholas I. Powell
Department of Chemistry, University College London. 20 Gordon Street, London WClH 0AJ (UK)
(Received February 12th, 1991)

Abstract

The phenylphosphole complex $\left[\mathrm{Os}_{3}\left(\mathrm{PhPC}_{4} \mathrm{H}_{4}\right)(\mathrm{CO})_{11}\right]$ decarbonylates in refluxing octane to yield the oxidative addition product $\left[\mathrm{Os}_{3}\left(\mu_{3}-\mathrm{PhPC}_{4} \mathrm{H}_{4}\right)(\mathrm{CO})_{9}\right]$ (1) in which ring-opening of both the triosmium and the five-membered phosphole rings has occurred, while further thermal decarbonylation to the cluster $\left[\mathrm{Os}_{3}\left(\mu_{3}-\mathrm{PhPC}_{4} \mathrm{H}_{4}\right)(\mathrm{CO})_{8}\right]$ (2) leads to metal ring closure and a major reorganisation of the coordination of the 8 -electron donating $\mathrm{PhPC}_{4} \mathrm{H}_{4}$ ligand.

Some five-membered heterocyclic ligands (furan [1], thiophene [2], pyrrole [3]) undergo oxidative addition with $\mathrm{C}-\mathrm{H}$ bond cleavage on reaction with $\left[\mathrm{Os}_{3}(\mathrm{CO})_{10}(\mathrm{MeCN})_{2}\right.$] to give $\left[\mathrm{Os}_{3}(\mu-\mathrm{H})\left(\mu-\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{X}\right)(\mathrm{CO})_{10}\right]$ ($\mathrm{X}=\mathrm{O}, \mathrm{S}$, or NR), whereas others (selenophene [2], tellurophene [2]) ring open to give the clusters $\left[\mathrm{Os}_{3}\left(\mu-\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{X}\right)(\mathrm{CO})_{10}\right](\mathrm{X}=\mathrm{Se}$ or Te$)$. We have now examined another member of this class of heterocycles, phenylphosphole, and find that simple substitution compounds $\left[\mathrm{Os}_{3}\left(\mathrm{PhPC}_{4} \mathrm{H}_{4}\right)_{x}(\mathrm{CO})_{12-x}\right](x=1$ or 2$)$ are formed initially with the heterocycle η^{1}-co-ordinated through the P atom, which is the commonly found mode of co-ordination for phospholes [4]. The only other known type of co-ordination is η^{1} through phosphorus to one metal atom and η^{4} through carbon atoms to another metal atom [5]. However, oxidative addition does occur subsequently, since a solution of $\left[\mathrm{Os}_{3}\left(\mathrm{PhPC}_{4} \mathrm{H}_{4}\right)(\mathrm{CO})_{11}\right]$ in refluxing octane leads to $\left[\mathrm{Os}_{3}\left(\mathrm{PhPC}_{4} \mathrm{H}_{4}\right)\right.$ $\left.(\mathrm{CO})_{9}\right]$ (1) and to $\left[\mathrm{Os}_{3}\left(\mathrm{PhPC}_{4} \mathrm{H}_{4}\right)(\mathrm{CO})_{8}\right]$ (2) (respective yields 50 and 15% after 3 h and 18 and 25% after 10 h). Isolated cluster 1 was separately shown to convert thermally to cluster 2 . The ${ }^{1} \mathrm{H}$ NMR spectrum * indicates that cluster 1 does not contain a hydride ligand and that the C_{4} chain is still intact but is bonded to the phosphorus atom at one end only. However, a single-crystal X-ray structure **
(Fig. 1) was needed to establish the mode of bonding. The $\mathrm{PhPC}_{4} \mathrm{H}_{4}$ ligand is bonded to the three metal atoms as an 8 -electron donor which makes cluster 1 a 50 -electron cluster with only two Os-Os bonds as expected for this count. The coordination can be analysed in terms of a μ-phosphido (three-electron donor) and a μ-alkylidene (two-electron donor) bridge linking the bonded $\operatorname{Os}(1)-\operatorname{Os}(2)$ edge and an η^{3}-allyl (three-electron donor) group bonded to $\mathrm{Os}(3)$. The five-membered phosphole ring has been expanded to a six-membered ring by insertion of an Os atom. This relates to our previously observed ring opening of selenophene and tellurophene except that products in those cases, $\left[\mathrm{Os}_{3}\left(\mu-\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{X}\right)(\mathrm{CO})_{10}\right](3)(\mathrm{X}=\mathrm{Se}$ or Te), have doubly bridging six-electron donating bridges. It is very likely that the initial product from $\left[\mathrm{Os}_{3}\left(\mathrm{PhPC}_{4} \mathrm{H}_{4}\right)(\mathrm{CO})_{11}\right]$ is the ring-opened cluster $\left[\mathrm{Os}_{3}(\mu\right.$ $\left.\mathrm{PhPC}_{4} \mathrm{H}_{4}\right)(\mathrm{CO})_{10}$] (3) $(\mathrm{X}=\mathrm{PPh})$ with structure closely related to that of $\left[\mathrm{Os}_{3}\left(\mathrm{SeC}_{4} \mathrm{H}_{4}\right)(\mathrm{CO})_{10}\right.$] but this species must readily decarbonylate to cluster 1 and is not observed (Scheme 1).

On decarbonylation of cluster 1 to give cluster 2, it appears from the ${ }^{1} \mathrm{H}$ NMR spectrum * that the $\mathrm{PhPC}_{4} \mathrm{H}_{4}$ ligand remains intact but there are large changes in the chemical shifts and coupling constants which indicate that there is a total reorganisation in the way the ligand is coordinated. The single-crystal X-ray structure ${ }^{* *}$ of 2 shows that the $\mathrm{PhPC}_{4} \mathrm{H}_{4}$ ligand is indeed intact (Fig. 2) and is still an eight-electron donor. The loss of CO in this process is compensated for by the formation of a new Os-Os bond with closure of the metal triangle. This change in cluster shape has necessitated a major change in the way the organic ligand is co-ordinated. The μ-phosphido component to the bonding remains but the C_{4} chain is now co-ordinated through a σ-bond $[\mathrm{Os}(1)-\mathrm{Os}(4)]$ and an η^{4}-diene co-ordination to $\mathrm{Os}(3)$. In effect one $\mathrm{Os}-\mathrm{C} \sigma$-bond and an η^{3}-allyl bond is replaced by an η^{4}-diene bond to metal.

There are many known examples of co-ordinated phospholes, all bonded through the phosphorus atom to the metal but this appears to be the first example of an

[^0]

Fig. 1. Molecular structure of $\left[\mathrm{Os}_{3}\left(\mathrm{PhPC}_{4} \mathrm{H}_{4}\right)(\mathrm{CO})_{9}\right](1)$; selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$: $\mathrm{Os}(1)-\mathrm{Os}(2), 2.813(1) ; \mathrm{Os}(2)-\mathrm{Os}(3), 2.948(1) ; \mathrm{Os}(1) \ldots \mathrm{Os}(3), 4.510(1) ; \mathrm{Os}(1)-\mathrm{P}, 2.353(5) ; \mathrm{Os}(2)-\mathrm{P}$, $2.380(5) ; \mathrm{Os}(1)-\mathrm{C}(4), 2.10(2) ; \mathrm{Os}(2)-\mathrm{C}(4), 2.25(2) ; \mathrm{Os}(3)-\mathrm{C}(1), 2.22(2) ; \mathrm{Os}(3)-\mathrm{C}(2), 2.21(2) ; \mathrm{Os}(3)-\mathrm{C}(3)$, $2.34(2) ; \mathrm{P}-\mathrm{C}(1), 1.79(2) ; \mathrm{C}(1)-\mathrm{C}(2), 1.40(3) ; \mathrm{C}(2)-\mathrm{C}(3), 1.44(3) ; \mathrm{C}(3)-\mathrm{C}(4), 1.44(3) ; \mathrm{P}-\mathrm{C}(1)-\mathrm{C}(2)$, $121(1) ; \mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3), 117(2) ; \mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4), 129(2) ; \mathrm{Os}(1)-\mathrm{P}-\mathrm{Os}(2), 72.9(1) ; \mathrm{Os}(1)-\mathrm{C}(4)-\mathrm{Os}(2)$, 80.4(7).

$3(X=P P h)$

2

Fig. 2. Molecular structure of $\left[\mathrm{Os}_{3}\left(\mathrm{PhPC}_{4} \mathrm{H}_{4}\right)(\mathrm{CO})_{8}\right]$ (2); selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$: $\operatorname{Os}(1)-\mathrm{Os}(2), 2.863(2) ; \mathrm{Os}(2)-\mathrm{Os}(3), 2.768(2) ; \mathrm{Os}(1)-\mathrm{Os}(3), 2.861(2) ; \mathrm{Os}(1)-\mathrm{P}, 2.339(7) ; \mathrm{Os}(2)-\mathrm{P}, 2.331(7) ;$ $\mathrm{Os}(3) \ldots \mathrm{P}, 2.874(6) ; \mathrm{Os}(3)-\mathrm{C}(1), 2.32(3) ; \mathrm{Os}(3)-\mathrm{C}(2), 2.28(3) ; \mathrm{Os}(3)-\mathrm{C}(3), 2.27(3) ; \mathrm{Os}(3)-\mathrm{C}(4), 2.14(3) ;$ $\mathrm{Os}(1)-\mathrm{C}(4), 2.14(3) ; \mathrm{P}-\mathrm{C}(1), 1.77(3) ; \mathrm{C}(1)-\mathrm{C}(2), 1.40(3) ; \mathrm{C}(2)-\mathrm{C}(3), 1.39(5) ; \mathrm{C}(3)-\mathrm{C}(4), 1.40(5) ; \mathrm{P}_{-}$ $\mathrm{C}(1)-\mathrm{C}(2), 134(3) ; \mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3), 124(3) ; \mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4), 126(2) ; \mathrm{C}(3)-\mathrm{C}(4)-\mathrm{Os}(1), 131(2) ; \mathrm{Os}(1)-\mathrm{P}-$ Os(2), 75.6(2).
oxidative addition with a metal atom inserted into a $\mathrm{P}-\mathrm{C}$ bond. Indeed in other cases the reverse (ring-closure) reaction occurs as in the reaction of μ-phosphido ligands with acetylenes to give phosphole-type rings [6].

Acknowledgements. We thank the SERC for a studentship (for N.I.P.) and for a grant towards the diffractometer.

References

1 D. Himmelreich and G. Müller, J. Organomet. Chem., 297 (1985) 341.
2 A.J. Arce, A.J. Deeming, Y. De Sanctis, R. Machado, J. Manzur and C. Rivas, J. Chem. Soc., Chem. Commun., (1990) 1568.
3 A.J. Deeming, A.J. Arce, Y. De Sanctis, M. Day and K.I. Hardcastle, Organometallics, 8 (1989) 1408 and 9 (1990) 6.
4 F. Mathey, J. Fischer and J.H. Nelson, Struct. Bonding, 55 (1983) 153.
5 E.H. Bray, W. Hübel and I. Capier, J. Am. Chem. Soc., 83 (1961) 4406.
6 D. Braga, A.J.M. Caffyn, M.C. Jennings, M.J. Mays, L. Manojlovic-Muir, P.R Raithby, P. Sabatino and K.W. Woulfe, J. Chem. Soc., Chem. Commun., (1989) 1401.
7 G.M. Sheldrick, Shelxtl-Plus, Package for Crystal Structure Determination, University of Göttingen, 1986.

[^0]: * Selected spectroscopic data for clusters I and 2: IR data $\left(\mathrm{cm}^{-1}\right)$ for cyclohexane solutions; ${ }^{1}$ H NMR data ($300 \mathrm{MHz}, J$ values in Hz) for acetone- d_{6} solutions at room temperature. Cluster 1: $\boldsymbol{\nu}(\mathrm{CO})$: $2082 \mathrm{w}, 2065 \mathrm{sh}, 2059 \mathrm{vs}, 2045 \mathrm{~m}, 2030 \mathrm{~s}, 2012 \mathrm{~s}, 1999 \mathrm{~m}, 1988 \mathrm{~m}, 1981 \mathrm{~s}, 1964 \mathrm{w}, 1955 \mathrm{w} .{ }^{1} \mathrm{H}$ NMR: $\delta 7.48$ $(\mathrm{m}, \mathrm{Ph}), 6.15\left(\mathrm{~m}, \mathrm{H}^{\mathrm{x}}\right), 5.62\left(\mathrm{dd}, \mathrm{H}^{\mathrm{y}}\right), 4.84\left(\mathrm{ddd}, \mathrm{H}^{\mathrm{w}}\right), 3.40\left(\mathrm{dd}, \mathrm{H}^{\mathrm{y}}\right)\left(J\left(\mathrm{H}^{x}-\mathrm{H}^{y}\right) 8.6, J\left(\mathrm{H}^{\mathrm{x}}-\mathrm{H}^{\mathrm{w}}\right) 6.6\right.$, $J\left(\mathrm{H}^{\mathrm{x}}-\mathrm{H}^{2}\right) 0.4, J\left(\mathrm{H}^{y}-\mathrm{H}^{2}\right) 7.6, J\left(\mathrm{H}^{\mathrm{w}}-\mathrm{P}\right)$ 20.7, $J\left(\mathrm{H}^{\mathrm{x}}-\mathrm{P}\right) 3.5, J\left(\mathrm{H}^{\mathrm{y}}-\mathrm{P}\right)$ 12.8, $\left.J\left(\mathrm{H}^{\mathrm{z}}-\mathrm{P}\right) 7.6\right)$. Cluster 2: $\nu(\mathrm{CO}): 2080 \mathrm{~m}, 2048 \mathrm{~s}, 2014 \mathrm{vs}, 1990 \mathrm{~m}, 1964 \mathrm{~m}, 1949 \mathrm{w} .{ }^{1} \mathrm{H}$ NMR: $\delta 10.56$ (ddd, H^{z}), 7.85 (dd, H^{y}), $7.50(\mathrm{~m}, \mathrm{Ph}), 6.35\left(\mathrm{dddd}, \mathrm{H}^{\mathrm{x}}\right), 4.63\left(\mathrm{dd}, \mathrm{H}^{\mathrm{w}}\right)\left(J\left(\mathrm{H}^{\mathrm{y}}-\mathrm{H}^{\mathrm{y}}\right) 8.3, J\left(\mathbf{H}^{\mathrm{x}}-\mathrm{H}^{\mathrm{z}}\right) 1.0, J\left(\mathrm{H}^{\mathrm{x}}-\mathbf{H}^{\mathrm{y}}\right) 6.6\right.$, $\left.J\left(\mathrm{H}^{\mathrm{w}}-\mathrm{H}^{\mathrm{x}}\right) 10.0, J\left(\mathrm{H}^{\mathrm{w}}-\mathrm{P}\right) 7.6, J\left(\mathrm{H}^{\mathrm{x}}-\mathrm{P}\right) 21.1, J\left(\mathrm{H}^{2}-\mathrm{P}\right) 4.3\right)$.
 ** Crystal structure determinations. Both structures: Nicolet R3v/m diffractometer using Mo- K_{a} radiation ($\lambda-0.71073 \AA$) at $23^{\circ} \mathrm{c}$, shelxtl-plus [7]. Cluster I : yellow crystal, $\mathrm{C}_{19} \mathrm{H}_{9} \mathrm{O}_{9} \mathrm{Os}_{3} \mathrm{P}, \mathrm{M}=982.85$, triclinic, space group $P \overline{1}, a 8831(2), b$ 8.824(2), c 14.521(3) $\AA, \alpha 85.31(2), \beta 80.49(2), \gamma 79.33(2)^{\circ}, U$ $1094.9(5) \AA^{3}, Z=2, \mu\left(\mathrm{Mo}-K_{\alpha}\right) 175.0 \mathrm{~cm}^{-1}, F(000)=876$. Direct methods, 3075 unique absorptioncorrected intensity data between $5 \leqslant 2 \theta \leqslant 50^{\circ}$ and with $I_{\mathrm{o}} \geqslant 3 \sigma\left(I_{\mathrm{o}}\right)$ in refinement, 289 parameters (all non-H atoms anisotropic, H -atoms in idealised positions), final $R=0.0546$ and $R_{w}=0.0541$ where $R_{\mathrm{w}}=\left[\Sigma w\left(\left|F_{\mathrm{o}}\right|-\left|F_{\mathrm{c}}\right|\right)^{2} / \Sigma w\left|F_{\mathrm{o}}\right|^{2}\right]^{1 / 2}$ with $w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}\right)+0.0001 F_{\mathrm{o}}^{2}\right]$. Cluster 2: yellow crystal, $\mathrm{C}_{18} \mathrm{H}_{9} \mathrm{O}_{8} \mathrm{Os}_{3} \mathrm{P}, M=954.84$, monoclinic, space group $P 2_{1} / n$, a 12.548(4), b 10.470(4), c 17.084(4) $\AA, \beta 112.65(3)^{\circ}, U$ 2071(1) $\AA^{3}, Z=4, \mu\left(\mathrm{Mo}-K_{\alpha}\right) 185.0 \mathrm{~cm}^{-1}, F(000)=1696$. Direct methods, 2504 unique absorption-corrected data between $5 \leqslant 2 \theta \leqslant 50^{\circ}$ and with $I_{\mathrm{o}} \geqslant 3 \sigma\left(I_{\mathrm{o}}\right)$ in refinement, 266 parameters (all non-H atoms except $\mathrm{C}(21)$ anisotropic, H -atoms in idealised positions), final $R=0.0635$ and $R_{w}=0.0655$ where $R_{w}=\left[\sum w\left(\left|F_{\mathrm{o}}\right|-\left|F_{\mathrm{c}}\right|\right)^{2} / \sum w\left|F_{\mathrm{o}}\right|^{2}\right]^{1 / 2}$ wilh $w=$ $1 /\left[\sigma^{2}\left(F_{\mathrm{o}}\right)+0.0022 F_{\mathrm{o}}^{2}\right]$. A list of atom coordinates and a complete list of bond lengths and angles are available from the Cambridge Crystallographic Data Centre.

